姓名: 李向东
职称:
简介: 李向东,现任中国科学院数学与系统科学研究院研究员、华罗庚应用数学首席研究员、随机分析研究中心主任,中科院“百人计划”入选者。1999年获中国科学院应用数学研究所与葡萄牙里斯本大学联合培养博士学位,2000年至2003年在牛津大学数学研究所从事博士后研究,2003年获法国图卢兹大学终身教职。曾任复旦大学数学科学学院教授,2015年至今任现职。李向东主要研究方向为随机分析与随机微分几何。他在路径空间上证明了Markov联络测地线的整体存在唯一性和Wiener测度的拟不变性,解决了法国科学院院士P. Malliavin提出的公开问题,相关成果被D. Elworthy教授在2006年国际数学家大会报告中引用。在非紧流形上建立了Ricci曲率可积条件下的Riesz变换Lp-有界性,提出最佳Bakry-Emery Ricci曲率维数条件下的Liouville定理,并合作改进了A. Lichnerowicz的Cheeger-Gromoll分裂定理 [1]。其关于最优传输理论与随机矩阵的研究成果发表于《数学所讲座2016--随机分析与几何》等专著。
相关视频