High order bound preserving discontinuous Galerkin methods for compressible multi-species flow with chemical reactions
报告题目:High order bound preserving discontinuous Galerkin methods for compressible multi-species flow with chemical reactions
时间:2024-12-27(周五)上午10:00-11:30
地点:数学楼2-3会议室
摘要: In this talk, we consider bound preserving problems for multispecies and multireaction chemical reactive flows. In this problem, the density and pressure are nonnegative, and the mass fraction should be between 0 and 1. The mass fraction does not satisfy a maximum principle and hence it is not easy to preserve the upper bound 1. Also, most of the bound-preserving techniques available are based on Euler forward time integration. Therefore, for problems with stiff source, the time step will be significantly limited. Some previous ODE solvers for stiff problems cannot preserve the total mass and the positivity of the numerical approximations at the same time. In this work, we will construct third order conservative bound-preserving methods to overcome all these difficulties. Moreover, we will discuss how to control numerical oscillations.
报告人简介:
杜洁,华东师范大学青年研究员,博士生导师。2015年于中国科学技术大学获得理学博士学位。读博期间前往香港大学担任研究助理,并作为联合培养博士研究生前往布朗大学学习。博士毕业后分别于香港中文大学、清华大学和华东师范大学进行博士后、助理教授和青年研究员的工作。主要从事偏微分方程高精度数值方法研究工作,于数值计算及其应用方向的主流杂志上已发表30余篇学术论文,其中包括应用数学类以及工程类著名杂志SIAM Journal on Scientific Computing、Journal of Computational Physics和Transportation Research Part B等。
邀请人:梅立泉教授