【数论系列报告六】:Super-positivity of a family of L-functions

讲座名称: 【数论系列报告六】:Super-positivity of a family of L-functions
讲座时间 2017-06-14
讲座地点 理科楼407室
讲座人 黄炳荣
讲座内容
【数论系列报告六】
报告题目: Super-positivity of a family of L-functions
报告时间: 2017.06.14 (周三) 上午10:40 – 12:10
报告地点: 理科楼407室
报告人: 黄炳荣 (山东大学)
报告摘要:
Zhiwei Yun and Wei Zhang introduced the notion of “super-positivity of self-dual L-functions” which specifies that all derivatives of the completed L-function at the central value $s=1/2$ should be non-negative. The Riemann Hypothesis implies super-positivity for self-dual cuspidal automorphic L-functions on $GL(n)$.
This talk is based on recent joint work with Dorian Goldfeld where we prove, for the first time, that there are infinitely many L-functions associated to modular forms for $SL(2,Z)$ each of which has the super-positivity property.
 

讲座人介绍

黄炳荣,山东大学。

讲座视频 暂无视频

(转载文章,请注明出处: 西安交通大学学术资源平台 http://meeting.xjtu.edu.cn)

如果您有学术信息和动态,欢迎投稿,wuxuan@mail.xjtu.edu.cn。我们将在第一时间确认并收录